Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Johnson, Michael David (Ed.)ABSTRACT Analysis of the genes retained in the minimized Mycoplasma JCVI-Syn3A genome established that systems that repair or preempt metabolite damage are essential to life. Several genes known to have such functions were identified and experimentally validated, including 5-formyltetrahydrofolate cycloligase, coenzyme A (CoA) disulfide reductase, and certain hydrolases. Furthermore, we discovered that an enigmatic YqeK hydrolase domain fused to NadD has a novel proofreading function in NAD synthesis and could double as a MutT-like sanitizing enzyme for the nucleotide pool. Finally, we combined metabolomics and cheminformatics approaches to extend the core metabolic map of JCVI-Syn3A to include promiscuous enzymatic reactions and spontaneous side reactions. This extension revealed that several key metabolite damage control systems remain to be identified in JCVI-Syn3A, such as that for methylglyoxal. IMPORTANCE Metabolite damage and repair mechanisms are being increasingly recognized. We present here compelling genetic and biochemical evidence for the universal importance of these mechanisms by demonstrating that stripping a genome down to its barest essentials leaves metabolite damage control systems in place. Furthermore, our metabolomic and cheminformatic results point to the existence of a network of metabolite damage and damage control reactions that extends far beyond the corners of it that have been characterized so far. In sum, there can be little room left to doubt that metabolite damage and the systems that counter it are mainstream metabolic processes that cannot be separated from life itself.more » « less
-
Saccharomyces cerevisiae OYE 3 shares 80% sequence identity with the well-studied Saccharomyces pastorianus OYE 1; however, wild-type OYE 3 shows different stereoselectivities toward some alkene substrates. Site-saturation mutagenesis of Trp 116 in OYE 3 followed by substrate profiling showed that the mutations had relatively little effect, opposite to that observed previously for OYE 1. The X-ray crystal structures of unliganded and phenol-bound OYE 3 were solved to 1.8 and 1.9 Å resolution, respectively. Both structures were nearly identical to that of OYE 1, with only a single amino acid difference in the active site region (Ser 296 versus Phe 296, part of loop 6). Despite their essentially identical static X-ray structures, molecular dynamics (MD) simulations revealed that loop 6 conformations differed significantly in solution between OYE 3 and OYE 1. In OYE 3, loop 6 remained nearly as open as observed in the crystal structure; by contrast, loop 6 closed over the active site of OYE 1 by ca. 4 Å. Loop closure likely generates a greater number of active site protein contacts for substrate bound to OYE 1 as compared to OYE 3. These differences provide an explanation for the differing stereoselectivities of OYE 3 and OYE 1, despite their nearly identical X-ray crystal structures.more » « less
An official website of the United States government

Full Text Available